Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
International Journal of Applied Pharmaceutics ; 15(3):1-11, 2023.
Article in English | EMBASE | ID: covidwho-20242785

ABSTRACT

Recent advancements in nanotechnology have resulted in improved medicine delivery to the target site. Nanosponges are three-dimensional drug delivery systems that are nanoscale in size and created by cross-linking polymers. The introduction of Nanosponges has been a significant step toward overcoming issues such as drug toxicity, low bioavailability, and predictable medication release. Using a new way of nanotechnology, nanosponges, which are porous with small sponges (below one microm) flowing throughout the body, have demonstrated excellent results in delivering drugs. As a result, they reach the target place, attach to the skin's surface, and slowly release the medicine. Nanosponges can be used to encapsulate a wide range of medicines, including both hydrophilic and lipophilic pharmaceuticals. The medication delivery method using nanosponges is one of the most promising fields in pharmacy. It can be used as a biocatalyst carrier for vaccines, antibodies, enzymes, and proteins to be released. The existing study enlightens on the preparation method, evaluation, and prospective application in a medication delivery system and also focuses on patents filed in the field of nanosponges.Copyright © 2023 The Authors.

2.
Latin American Journal of Pharmacy ; 42(Special Issue):68-76, 2023.
Article in English | EMBASE | ID: covidwho-20236608

ABSTRACT

Favipiravir is an anti-viral agent that inhibits RNA-dependent RNA polymerase of several RNA viruses and is approved for the treatment of influenza in Japan. It has a role as an antiviral drug, an anti-coronaviral (COVID-19) agent but the poor solubility of the favipiravir in the aqueous media of the human body cause a reduction in the effectiveness and bioavailability. In the current work, the favipiravir was formulated for the first time as solid dispersed system with curcumin to improve dissolution property and antiviral activity during treatment of Covid-19. Binary and ternary mix of favipiravir and curcumin with/without soluplus were prepared and characterized by Differential Scanning Calorimetry (DSC), Powder X-ray Diffractometry (PXRD) and Fourier Transform Infrared Spec-troscopy (FTIR) and subjected to the dissolution test by apparatus I according to the European Pharma-copeia. The antiviral activity was measured by its cytotoxicity against A549-hACE2 cells. The results re-vealed that there was a reduction in the crystallinity of both binary and ternary mixtures with an en-hancement of the dissolution in comparison with the pure drug which accompanied by an improvement in the antiviral activity which is promising results that need further .Copyright © 2023, Colegio de Farmaceuticos de la Provincia de Buenos Aires. All rights reserved.

3.
Annals of the Rheumatic Diseases ; 82(Suppl 1):985, 2023.
Article in English | ProQuest Central | ID: covidwho-20234827

ABSTRACT

BackgroundSystemic sclerosis (SSc) is a severe, progressive multisystem rheumatic disease with high mortality, but without approved disease-modifying treatment to stop or reverse course of disease. Intravenous immunoglobulin G (IgG) may have a positive impact on SSc based upon available literature reports. However, to date, there have been no clinical trials evaluating subcutaneous IgG (SCIG) in SSc. In particular, the impact of pathologically altered skin in SSc on local safety and pharmacokinetics (PK) of SCIG has not been explored yet.ObjectivesThe primary and secondary objectives of this trial (NCT04137224) included safety, including local infusion safety, and bioavailability of subcutaneous IgG (IgPro20) in adults with diffuse cutaneous SSc (dcSSc).MethodsThis was a randomized, open-label, crossover study. Adult subjects with dcSSc diagnosis within 5 years from first non-Raynaud's phenomenon and modified Rodnan Skin Score of 15-45 at screening were randomized 1:1 to sequence A (IgPro20, 20% normal human subcutaneous immunoglobulin followed by IgPro10, 10% normal human intravenous immunoglobulin) or sequence B (IgPro10 followed by IgPro20). Each subject was to complete two treatment periods (16 weeks each), with up to 40 weeks (including screening) study duration for an individual subject. Doses received were 0.5g/kg/week split over two sessions for IgPro20, and 2g/kg/4 weeks split over 2-5 days for IgPro10. The primary endpoint was safety of IgPro20, described as treatment-emergent adverse events (TEAEs) and changes in clinical observations.Results27 subjects were randomized, with 13 subjects to sequence A and 14 subjects to sequence B. In total, 25 subjects completed the study. Of 27 treated subjects, 107 TEAEs occurred in 22 subjects (81.5%) over the 36-week study period, the majority of which were mild or moderate. The most common TEAEs (>10% of subjects) by preferred term (PT) were headache (12 events occurring in 6 subjects [22.2%]), COVID-19 (3 events occurring in 3 subjects [11.1%]), diarrhoea (3 events occurring in 3 subjects [11.1%]), and vomiting (3 events occurring in 3 subjects [11.1%]).A total of 10 serious AEs (SAEs) were reported in 6 subjects (Viral infection, Chronic gastritis, Vomiting, Dehydration, Upper gastrointestinal haemorrhage, Chest pain, Myocardial infarction, Myocardial ischemia, Breast cancer, Interstitial lung disease). Among these, one subject experienced 2 SAEs (myocardial ischemia & myocardial infarction) and was discontinued from study treatment. None of the SAEs were considered related to study treatment by the investigator, and no deaths were reported.For IgPro20, 14 infusion site reactions (ISRs) occurred in 5 subjects (19.2%), all were mild or moderate in severity. The most common ISRs were infusion site pain and infusion site swelling (3 events in 2 subjects each, 7.7%). In total, 686 IgPro20 infusions were performed, resulting in an overall ISR rate per infusion of 0.02, ie 2 ISRs per 100 infusions. No ISRs were reported for IgPro10.No clinically relevant trends in vital signs, body weight, clinical laboratory tests, electrocardiograms, or pulmonary function tests were observed.PK profiles and bioavailability in dcSSc subjects were similar to those observed in other approved indications such as Primary Immunodeficiency. Population relative bioavailability of IgPro20, based on dose-normalized, baseline-corrected AUC0-tau was 0.761 (90% CI: 0.7033, 0.8232), ie 76.1% compared to IgPro10 (intravenous IgG).ConclusionThe overall safety profiles of IgPro20 and IgPro10 in subjects with dcSSc were consistent with that in approved indications such as CIDP, including a relatively low ISR rate for IgPro20. PK profiles and bioavailability were also similar to other indications. This study indicates that subcutaneous administration of IgPro20 has acceptable safety, bioavailability and PK profiles in patients with dcSSc. AcknowledgementsEditorial assistance was provided by Meridian HealthComms Ltd., funded by CSL Behring.Disclosure of InterestsChristopher P Denton Speakers bureau: Ja ssen, Boehringer Ingelheim, Consultant of: GSK, CSL Behring, Boehringer Ingelheim, Merck, Roche, Sanofi, Grant/research support from: GSK, CSL Behring, Inventiva, Horizon, Otylia Kowal-Bielecka Speakers bureau: Abbvie, Janssen-Cilag, Boehringer Ingelheim, Medac, MSD, Novartis, Pfizer, Sandoz, Consultant of: Boehringer Ingelheim and Novartis, Grant/research support from: Received congress support from Abbvie, Boehringer Ingelheim, and Medac, Susanna Proudman Speakers bureau: Boehringer Ingelheim, Grant/research support from: Janssen, Marzena Olesińska Consultant of: AstraZeneca, Margitta Worm Consultant of: Novartis Pharma GmbH, Sanofi-Aventis Deutschland GmbH, DBV Technologies S.A, Aimmune Therapeutics UK Limited, Regeneron Pharmaceuticals, Inc, Leo Pharma GmbH, Boehringer Ingelheim Pharma GmbH &Co.KG, ALK-Abelló Arzneimittel GmbH, Kymab Limited, Amgen GmbH, Abbvie Deutschland GmbH & Co. KG, Pfizer Pharma GmbH, Mylan Germany GmbH (A Viatris Company), AstraZeneca GmbH, Lilly Deutschland GmbH and GlaxoSmithKline GmbH & Co. KG., Nicoletta Del Papa Speakers bureau: Janssen Cilag, Boehringer Ingelheim., Marco Matucci-Cerinic Speakers bureau: Biogen, Sandoz, Boehringer Ingelheim, Consultant of: CSL Behring, Boehringer Ingelheim, Grant/research support from: MSD, Chemomab, Jana Radewonuk Shareholder of: CSL Behring, Employee of: CSL Behring, Jeanine Jochems Shareholder of: CSL Behring, Employee of: CSL Behring, Amgad Shebl Shareholder of: CSL Behring, Employee of: CSL Behring, Anna Krupa Shareholder of: CSL Behring, Employee of: CSL Behring, Jutta Hofmann Shareholder of: CSL Behring, Employee of: CSL Behring, Maria Gasior Shareholder of: CSL Behring, Employee of: CSL Behring.

4.
Clin Pharmacol Drug Dev ; 12(5): 484-492, 2023 05.
Article in English | MEDLINE | ID: covidwho-2323614

ABSTRACT

Asciminib, a first-in-class allosteric BCR::ABL1 inhibitor that works by Specifically Targeting the ABL Myristoyl Pocket (STAMP) is used in the treatment of chronic myeloid leukemia. We describe a randomized, single-dose, open-label, four-period crossover study in healthy adult participants (N = 24) which evaluated the relative bioavailability of a single 40-mg dose of asciminib in pediatric formulation (1-mg mini-tablets) compared with the reference adult tablet under fasted conditions. Additionally, the effect of food on the bioavailability of the mini-tablet formulation was evaluated. Under fasted conditions, asciminib exposure was similar for both formulations (geometric mean [Gmean ] area under the concentration-time curve from time 0 to infinity [AUCinf ] 5970 and 5700 ng ×h/mL, respectively). Food decreased the AUCinf and maximum plasma concentration (Cmax ) of the asciminib mini-tablets; this effect was more pronounced with a high-fat meal (Gmean ratios [90% confidence interval]: fasted/low-fat meal, 0.42 [0.38-047], 0.32 [0.28-0.37], respectively; fasted/high-fat meal, 0.30 [0.27-0.34], 0.22 [0.19-0.25], respectively). The mini-tablets were assessed to be easy to ingest with good palatability. Asciminib doses for a pivotal pediatric clinical trial will be defined using physiologically based pharmacokinetic modeling, which will consider the age and the higher food effect observed with the mini-tablets.


Subject(s)
Pyrazoles , Humans , Adult , Child , Biological Availability , Cross-Over Studies , Pyrazoles/pharmacokinetics , Tablets
5.
Journal of Biological Chemistry ; 299(3 Supplement):S575, 2023.
Article in English | EMBASE | ID: covidwho-2320166

ABSTRACT

Phosphoserine (pSer) sites are primarily located within disordered protein regions, making it difficult to experimentally ascertain their effects on protein structure and function. Therefore, the production of 15N- (and 13C)-labeled proteins with site-specifically encoded pSer for NMR studies is essential to uncover molecular mechanisms of protein regulation by phosphorylation. While genetic code expansion technologies for the translational installation of pSer in Escherichia coli are well established and offer a powerful strategy to produce site-specifically phosphorylated proteins, methodologies to adapt them to minimal or isotope-enriched media have not been described. This shortcoming exists because pSer genetic code expansion expression hosts require the genomic DELTAserB mutation, which increases pSer bioavailability but also imposes serine auxotrophy, preventing growth in minimal media used for isotopic labeling of recombinant proteins. Here, by testing different media supplements, we restored normal BL21(DE3) DELTAserB growth in labeling media but subsequently observed an increase of phosphatase activity and mis-incorporation not typically seen in standard rich media. After rounds of optimization and adaption of a high-density culture protocol, we were able to obtain >=10 mg/L homogenously labeled, phosphorylated superfolder GFP. To demonstrate the utility of this method, we also produced the intrinsically disordered serine/arginine-rich region of the SARS-CoV-2 Nucleocapsid protein labeled with 15N and pSer at the key site S188 and observed the resulting peak shift due to phosphorylation by 2D and 3D heteronuclear single quantum correlation analyses. We propose this cost-effective methodology will pave the way for more routine access to pSer-enriched proteins for 2D and 3D NMR analyses. GCE4All Biomedical Technology Development and Dissemination Center was supported by National Institute of General Medical Science, OSU NMR Facility funded in part by the National Institutes of Health, the Medical Research Foundation at OHSU and the Collins Medical Trust, National Science Foundation EAGER, and by the M. J. Murdock Charitable Trust.Copyright © 2023 The American Society for Biochemistry and Molecular Biology, Inc.

6.
Topics in Antiviral Medicine ; 31(2):222-223, 2023.
Article in English | EMBASE | ID: covidwho-2317090

ABSTRACT

Background: Omicron subvariants questioned the efficacy of the approved therapies for the early COVID-19. In vitro data show that remdesivir (RDV), molnupiravir (MLN), and nirmatrelvir/ritonavir (NMV/r) all retained activity against all sub-lineages, while poor neutralizing activity was observed for Sotrovimab (SOT) and Tixagevimab/cilgavimab (TIX/CIL). No data about the risk of clinical failure or even in vivo antiviral activity are available. Method(s): Single-center observational comparison study enrolling all consecutive patients (pts) seen for care with a confirmed SARS-CoV-2 Omicron diagnosis and who met the AIFA criteria for eligibility for treatment with RDV, MLN, NMV/r, TIX/CIL, or SOT. Treatment allocation was subject to drug availability, time from symptoms onset, and comorbidities. Nasopharyngeal swab (NPS) VL was measured on day 1 (D1) and D7 and was expressed by log2 cycle threshold (CT) scale. Comparisons between treatment groups were made by Chi-square, and Wilcoxon paired tests. Primary endpoint was D1-D7 VL variation. Potential decrease in VL and average treatment effect (ATE) were calculated from fitting marginal linear regression models weighted for calendar month of drug initiation, duration of symptoms, and immunodeficiency using NMV/r as the comparator trial arm. Result(s): A total of 971 pts received treatments (SOT 321, MLN 231, NMV/r 211, TIX/CIL 70, and RDV 138): female 457 (47%), median age 67 yrs (IQR 56-78), 93% vaccinated;12% with negative baseline serology. At D1, median time from symptoms onset was 3 days (IQR 2,4). 379 (39%) pts were infected with BA.1, 215 (22%) with BA.2, 372 with BA.4/5 (38%), and 5 with BQ.1 (0,5%). D1 mean viral load was 4.02 log2. Adjusted analysis (ATE) showed that NMV/r significantly reduced VL compared to all the other drugs in pts infected with all sublineages, (Fig.1A-B) while less evidence for a difference vs. TIX/CIL was seen in those infected with BA.2 (p=0.05) (Fig.1 C-D). Conclusion(s): In this analysis of in vivo early VL reductions, NMV/r appears to be the drug showing the greatest antiviral activity, regardless of the underlying subvariant, perhaps with the exception of TIX/CIL in people infected with BA.2 for which there was less evidence for a difference. In the Omicron era, due to the high prevalence of vaccinated people and in absence of clinical events, VL is one of the possible alternative endpoints which guarantees adequate statistical power. Fig 1 SARS-CoV-2 RNA levels at D1 and D7 in patients treated with Nirmatrelvir/ ritonavir, Sotrovimab, Molnupiravir, Remdesivir, and Tixagevimab/cilgavimab. Dot-plots showing the comparison of viral loads detected at D1 and D7 and the variation of RNA levels observed between the two time-points by intervention in (A) all patients treated with Nirmatrelvir/ritonavir (n=211), Sotrovimab (n=321), or Molnupiravir (n=231), or Remdesivir (n=138), or Tixagevimab/ cilgavimab (n=136);(C) patients with Omicron BA.2 infection treated with Nirmatrelvir/ritonavir (n=58), Sotrovimab (n=81), or Molnupiravir (n=21), or Remdesivir (n=37), or Tixagevimab/cilgavimab (n=18);(D) patients with Omicron BA.4/5 infection treated with Nirmatrelvir/ritonavir (n=102), Sotrovimab (n=92), or Molnupiravir (n=110), or Remdesivir (n=16), or Tixagevimab/cilgavimab (n=52). Viral RNA levels are expressed as log2 CT values. The horizontal dashed line represents the limit of detection (CT: 40.0), values >=40 are considered negative. Mean of log2 CT values, and SD are shown in the graph. Statistical analysis of the differences in viral loads by intervention as compared to Nirmatrelvir/ritonavir was performed by Mann-Whitney test. Potential decrease in VL and average treatment effect (ATE) were calculated from fitting marginal linear regression models weighted for calendar month of drug initiation, duration of symptoms, and immunodeficiency using NMV/r as the comparator trial arm. Results are shown (B) for patients infected with all Omicron sublineages and (D) for those infected with Omicron BA.2 sublineage.

8.
Topics in Antiviral Medicine ; 31(2):213-214, 2023.
Article in English | EMBASE | ID: covidwho-2313407

ABSTRACT

Background: SARS-CoV-2 evolution has contributed to successive waves of infections and severely compromised the efficacy of available SARS-CoV-2 monoclonal antibodies. Decaying vaccine-induced immunity, vaccine hesitancy, and limited vaccine protection in older and immunocompromised populations further compromises vaccine efficacy at the population level. Early antiviral treatments, including intravenous remdesivir (RDV), reduce hospitalization and severe disease due to COVID-19. An orally bioavailable RDV analog could facilitate earlier widespread administration to non-hospitalized COVID-19 patients. Method(s): We synthesized monoalkyl glyceryl ether phosphodiesters of GS-441524 (RVn), lysophospholipid analogs which allow for oral bioavailability and stability in plasma. We evaluated the in vivo efficacy of our lead compound, 1-O-octadecyl-2-O-benzyl-sn-glyceryl-3-phospho-RVn (V2043), in an oral treatment model of murine SARS-CoV-2 infection. We then synthesized numerous phospholipid analogs of RVn and determined which modifications enhanced in vitro antiviral activity and selectivity. The most effective compounds against SARS-CoV-2 were then evaluated for antiviral activity against other RNA viruses. Result(s): Oral treatment of SARS-CoV-2 infected BALB/c mice with V2043 (60 mg/kg once daily for 5 days, starting 12 hrs after infection) reduced lung viral load by more than 100-fold versus vehicle at day 2 and to below the LOD at day 5. V2043 inhibited previous and contemporary SARS-CoV-2 Variants of concern to a similar degree, as measured by the half maximal effective concentration (EC50) in a human lung epithelial cell line (Calu-3). Evaluation of multiple RVn analogs with hydrophobic esters at the sn-2 of glycerol revealed that in vitro antiviral activity was improved by the introduction of a 3-fluoro-4-methoxysubstituted benzyl or a 3-or 4-cyano-substituted benzyl. These compounds showed a 2-to 6-fold improvement in antiviral activity compared to analogs having an unsubstituted benzyl, such as V2043, and were more active than RDV. These compounds also showed enhanced antiviral activity against multiple contemporary and emerging RNA viruses. Conclusion(s): Collectively, our data support the development of RVn phospholipid prodrugs as oral antiviral agents for prevention and treatment of SARS-CoV-2 infections and as preparation for future outbreaks of pandemic RNA viruses.

9.
Int J Nanomedicine ; 18: 2239-2251, 2023.
Article in English | MEDLINE | ID: covidwho-2312345

ABSTRACT

Background: The aim of the present investigation is to prepare baricitinib (BAR)-loaded diphenyl carbonate (DPC) ß-cyclodextrin (ßCD) based nanosponges (NSs) to improve the oral bioavailability. Methods: BAR-loaded DPC-crosslinked ßCD NSs (B-DCNs) were prepared prepared by varying the molar ratio of ßCD: DPC (1:1.5 to 1:6). The developed B-DCNs loaded with BAR were characterized for particle size, polydispersity index (PDI), zeta potential (ZP), % yield and percent entrapment efficiency (%EE). Results: Based on the above evaluations, BAR-loaded DPC ßCD NSs (B-CDN3) was optimized with mean size (345.8±4.7 nm), PDI (0.335±0.005), Yield (91.46±7.4%) and EE (79.1±1.6%). The optimized NSs (B-CDN3) was further confirmed by SEM, spectral analysis, BET analysis, in vitro release and pharmacokinetic studies. The optimized NSs (B-CDN3) showed 2.13 times enhancement in bioavailability in comparison to pure BAR suspension. Conclusion: It could be anticipated that NSs loaded with BAR as a promising tool for release and bioavailability for the treatment of rheumatic arthritis and Covid-19.


Subject(s)
COVID-19 , Cyclodextrins , Humans , COVID-19 Drug Treatment
10.
Letters in Applied NanoBioScience ; 12(4), 2023.
Article in English | Scopus | ID: covidwho-2291428

ABSTRACT

One of the biggest healthcare threats of this century is COVID – 19, undoubtedly. It has caused millions of deaths and raised alerts in the healthcare domain. This study focuses on the importance of 10 native Indian plant species and the phytochemicals obtained from them as a potential inhibitor to the Main protease enzyme of SARS CoV-2. About 26 phytochemicals were shortlisted for the same from the selected plants. Molecular docking was used to analyze the binding affinity of the phytochemicals in the active pocket of the Main protease enzyme to assess their effectiveness. The docking scores resulted in the selection of four compounds being more favorable than the native inhibitor N3, namely Quercetin, Withaferin A, Sominone, and Nimbin, with their binding energies being-8.42,-9.21,-9.95,-8.88 kcal/mol respectively. Furthermore, these four were further analyzed for their bioavailability scores. The studies showed that Sominone, Withaferin A are more potent inhibitors to Mpro of the SARS CoV-2 in all four. Thus further in Vitro studies can be done accordingly for the same. © 2022 by the authors.

11.
Journal of Pharmacology and Experimental Therapeutics ; 383(1):91-102, 2022.
Article in English | EMBASE | ID: covidwho-2304523

ABSTRACT

Effective drug delivery to the brain is critical for the treatment of glioblastoma (GBM), an aggressive and invasive primary brain tumor that has a dismal prognosis. Radiation therapy, the mainstay of brain tumor treatment, works by inducing DNA damage. Therefore, inhibiting DNA damage response (DDR) pathways can sensitize tumor cells to radiation and enhance cytotoxicity. AZD1390 is an inhibitor of ataxia-telangiectasia mutated kinase, a critical regulator of DDR. Our in vivo studies in the mouse indicate that delivery of AZD1390 to the central nervous system (CNS) is restricted due to active efflux by P-glycoprotein (P-gp). The free fraction of AZD1390 in brain and spinal cord were found to be low, thereby reducing the partitioning of free drug to these organs. Coadministration of an efflux inhibitor significantly increased CNS exposure of AZD1390. No differences were observed in distribution of AZD1390 within different anatomic regions of CNS, and the functional activity of P-gp and breast cancer resistance protein also remained the same across brain regions. In an intracranial GBM patient-derived xenograft model, AZD1390 accumulation was higher in the tumor core and rim compared with surrounding brain. Despite this heterogenous delivery within tumor-bearing brain, AZD1390 concentrations in normal brain, tumor rim, and tumor core were above in vitro effective radiosensitizing concentrations. These results indicate that despite being a substrate of efflux in the mouse brain, sufficient AZD1390 exposure is anticipated even in regions of normal brain. SIGNIFICANCE STATEMENT Given the invasive nature of glioblastoma (GBM), tumor cells are often protected by an intact blood-brain barrier, requiring the development of brain-penetrant molecules for effective treatment. We show that efflux mediated by P-glycoprotein (P-gp) limits central nervous system (CNS) distribution of AZD1390 and that there are no distributional differences within anatomical regions of CNS. Despite efflux by P-gp, concentrations effective for potent radiosensitization are achieved in GBM tumor-bearing mouse brains, indicating that AZD1390 is an attractive molecule for clinical development of brain tumors.Copyright © 2022 American Society for Pharmacology and Experimental Therapy. All rights reserved.

12.
Pharmacological Research - Modern Chinese Medicine ; 3 (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2294809

ABSTRACT

Garlic (Allium sativum) has been known for its potent medicinal activities and its interesting culinary role since ancient times. With over 200 phytochemicals and flavoring compounds elucidated and many others yet to, garlic promises to improve human health and vitality. Just like other phytochemical classes, essential oils for garlic have been reported to show interesting medical activities delving across diverse antimicrobial, cardio-protective, anti-cancer, anti-Alzheimer, anti-diabetic, and immunomodulatory activities. Garlic essential oils contain mainly volatile and non-volatile allyl-sulphur-based compounds, which are a product of the stream decomposition of Allicin (a major component of garlic extract). Although a lot of work has been done on Allicin, there is little substantive work on the bio-availability and toxicities of its essential oil. This study, however, reviewed the methods that in recent times have been used to extract essential oils from garlic, recent studies on composition and therapeutic activities of Garlic essential oils, and a predictive overview of their bioavailability and toxicity. Finally, recommendations for future studies and other interesting prospects of garlic were also highlighted.Copyright © 2022

13.
Clin Pharmacol Drug Dev ; 12(3): 333-342, 2023 03.
Article in English | MEDLINE | ID: covidwho-2304550

ABSTRACT

In this randomized, open-label, 2-part, 2 × 2 crossover, phase 1 study, the effect of a low-fat low-calorie (LFLC) meal on the relative bioavailability of a trametinib 2-mg tablet or dabrafenib 150-mg capsule was evaluated in healthy participants. Trametinib adjusted geometric mean ratios (90%CI) of fed : fasted for area under the concentration-time curve (AUC) from time 0 to the last quantifiable concentration and AUC from time 0 extrapolated to infinity were 0.76 (0.71-0.82) and 0.82 (0.77-0.88), respectively. For dabrafenib, the adjusted geometric mean ratios of AUC from time 0 to the last quantifiable concentration and AUC from time 0 extrapolated to infinity (90%CI) for fed:fasted were 0.85 (0.79-0.91) and 0.86 (0.80-0.92), respectively. Consumption of an LFLC meal delayed trametinib and dabrafenib absorption, with an increase in time to maximum concentration of ≈15 and ≈30 minutes, respectively, compared to the fasted state. These findings indicate that consumption of an LFLC meal reduced the bioavailability and delayed the absorption of trametinib and dabrafenib, supporting current recommendations to administer both drugs in the fasting state; however, an occasional LFLC meal is unlikely to affect the pharmacokinetics of the drugs once steady state is reached and, by consequence, not likely to alter the overall intended efficacy.


Subject(s)
Fasting , Humans , Biological Availability , Healthy Volunteers
14.
Biology (Basel) ; 12(4)2023 Mar 29.
Article in English | MEDLINE | ID: covidwho-2293230

ABSTRACT

Zinc is a powerful immunomodulatory trace element, and its deficiency in the body is closely associated with changes in immune functions and viral infections, including SARS-CoV-2, the virus responsible for COVID-19. The creation of new forms of zinc delivery to target cells can make it possible to obtain smart chains of food ingredients. Recent evidence supports the idea that the optimal intake of zinc or bioactive compounds in appropriate supplements should be considered as part of a strategy to generate an immune response in the human body. Therefore, controlling the amount of this element in the diet is especially important for populations at risk of zinc deficiency, who are more susceptible to the severe progression of viral infection and disease, such as COVID-19. Convergent approaches such as micro- and nano-encapsulation develop new ways to treat zinc deficiency and make zinc more bioavailable.

15.
Coronaviruses ; 2(11) (no pagination), 2021.
Article in English | EMBASE | ID: covidwho-2275885

ABSTRACT

Introduction: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is plaguing the entire world. Amidst the pandemic, research and development efforts are fo-cused on the challenges associated with the SARS-CoV-2 structure. Material(s) and Method(s): Efficient computational methodologies are applied to screen the available FDA-approved drugs/datasets/libraries to identify potent molecules. In the present study, we have carried out ab initio quantum chemical studies, including relativistic effects followed by molecular docking with the SARS-CoV-2 protease target by employing a tailor-made library consisting of molecular analogs of Resveratrol, a natural bioflavonoid. Result(s): The derived docking results were validated with ab initio quantum computations that in-cluded both density functional level (DFT) and Moller-Plesset second order perturbation theories (MP2). We found to be that Resveratrol and its analogs (R8 and R17) bind to the SARS-CoV-2 protease target. In addition to this, the computed IR spectrum is found in agreement with the report-ed experimental spectra for Resveratrol complexes and thus validates the modeling and reliability of proposed geometries. The solvation energies in the aqueous phase obtained using enhanced aug-cc-pVTZ basis sets confirm enhancement of bioavailability for Resveratrol through piperine, a natural alkaloid. Conclusion(s): The potential of the natural bioflavonoid Resveratrol and its analogs to be investigated through in vivo and in vitro SARS-CoV-2 protease models is concluded. The study investigated the potential of natural polyphenols as promising anti-viral therapeutics.Copyright © 2021 Bentham Science Publishers.

16.
Therapeutic Advances in Drug Safety ; 14:10-11, 2023.
Article in English | EMBASE | ID: covidwho-2274849

ABSTRACT

AIFA Monitoring Registries (wMRs) constitute a collection of drug registries (product registries) deployed to physicians and pharmacists through a national web platform. They have been adopted in the clinical practice since 2005 and are used to define the population for which the drug is available under the umbrella of the National Health Service (NHS - Servizio Sanitario Nazionale SSN), monitor prescription appropriateness and ensure the rapid access to potentially priority medicines allowing the implementation of patient-based managed entry agreements (MEAs). Each registry consists of specific data entry forms, collecting data at the patient level and filled in by authorized clinicians and pharmacists. The required information includes: 1. Registration form with patient personal data (anonymized after registration);2. Eligibility and clinical data form;3. Prescription and administration forms;4. Evaluation of disease status and treatment update form;and 5. End-of-treatment form. Evaluation and end-of-treatment forms provide main safety and effectiveness data at a patient level. Moreover, since entry forms are the same throughout the nation, this platform allows access to treatment in a homogeneous manner throughout the country. Recently, a new type of registry has been released, with the primary aim of monitoring the pregnancy prevention programme (PPP) following the prescription of potentially teratogenic medicinal products. All this information is collected in a national database that represents a key source of postmarketing evidence that is frequently exploited to answer both administrative and clinical questions, such as drug utilization among a specific pharmacological class or the effectiveness of a drug in a census consisting of all Italian patients treated with that medicinal product. For example, given the prospective nature of the data contained inside the wMRs, AIFA together with members of the relevant scientific associations were able to evaluate the effect of the COVID- 19 pandemic and lockdown measures on the new prescription (i.e. first prescription) of some cardiovascular drugs in Italy and suggest new studies to analyse the occurrence of new cardiovascular- related events resulting from the decline in the activation of these treatments. Equally important is the work assessing the effectiveness of tyrosine kinase inhibitors in chronic myeloid leukaemia (CML) patients in Italian clinical practice, which was able to highlight important aspects on both expected mortality and consequential use in first and second line TKIs in Italy. Finally, the wMRs were also a critical instrument in the management of the COVID-19 medicinal products since 29 October 2020, providing essential evidence on drug availability through the country, predicting possible shortages and publishing hundreds of freely available reports on the utilization trend of COVID-19 drugs in the different Italian Regions. In conclusion, the wMRs represent a key tool to generate pharmaco-epidemiological evidences in the Real-world setting and monitoring drug appropriateness for expensive, innovative drug.

17.
Food Reviews International ; 39(1):560-600, 2023.
Article in English | ProQuest Central | ID: covidwho-2269296

ABSTRACT

Obesity is a global health problem. In the past decades, the prevalence rate of obesity has risen sharply in epidemiology. Obesity has become an increasingly severe epidemic burden linked with different kinds of diseases, consisting of cardiovascular disease, diabetes, metabolic associated fatty liver disease, and even in COVID-19. Beneficial flavonoids in foods, as functional ingredients, combat obesity and maintain energy balance through multiple mechanisms. This review provides a brief overview of biological targets, possible mechanisms and the current therapeutic interventions including suppressing appetite, increasing energy consumption, regulating gut microbiota, inhibiting adipogenesis, anti-inflammation. In vitro and in vivo experiments as well as available clinical evidence related to the anti-obesity effects of pure flavonoid and flavonoid-rich extracts are also summarized and depicted. Furthermore, the metabolism and bioavailability of flavonoids are also concluded and discussed. Beneficial flavonoids have become promising candidates for treating and avoiding obesity, but poor bioavailability and short elimination half-life affects the absorption and efficacy. This paper reviews the different types of flavonoids and their potential effect of preventing obesity, which provide the basis for further research.

18.
Current Traditional Medicine ; 9(3):28-43, 2023.
Article in English | EMBASE | ID: covidwho-2267482

ABSTRACT

The mass casualties caused by the delta variant and the wave of the newer "Omicron" variant of SARS-COV-2 in India have brought about great concern among healthcare officials. The government and healthcare agencies are seeking effective strategies to counter the pandemic. The application of nanotechnology and repurposing of drugs are reported as promising approaches in the management of COVID-19 disease. It has also immensely boomed the search for productive, re-liable, cost-effective, and bio-assimilable alternative solutions. Since ancient times, the traditional-ly employed Ayurvedic bhasmas have been used for diverse infectious diseases, which are now employed as nanomedicine that could be applied for managing COVID-19-related health anomalies. Like currently engineered metal nanoparticles (NPs), the bhasma nanoparticles (BNPs) are also packed with unique physicochemical properties, including multi-elemental nanocrystalline compo-sition, size, shape, dissolution, surface charge, hydrophobicity, and multi-pathway regulatory as well as modulatory effects. Because of these conformational and configurational-based physico-chemical advantages, Bhasma NPs may have promising potential to manage the COVID-19 pandemic and reduce the incidence of pneumonia-like common lung infections in children as well as age-related inflammatory diseases via immunomodulatory, anti-inflammatory, antiviral, and adju-vant-related properties.Copyright © 2023 Bentham Science Publishers.

19.
Coronaviruses ; 3(6):39-52, 2022.
Article in English | EMBASE | ID: covidwho-2265489

ABSTRACT

Background: The multitargeted computational approach for the design of drugs to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lung infection from herbal sources may lead to compound(s) that is/are safe (derived from natural sources), effective (act on predefined targets) and broad spectrum (active in both, adult and juvenile population). Objective(s): The present work aims at developing a specific and effective treatment for a lung infection in both the adult and juvenile population, caused due to SARS-CoV-2 through a computational approach. Method(s): A systematic virtual screening of 27 phytoconstituents from 11 Indian herbs with antiviral, anti-inflammatory, and immunomodulatory activity was performed. After applying the Lipinski rule of five, 19 compounds that fitted well were subjected to molecular docking studies using Molegro virtual docker 6.0 with two targets viz. SARS-CoV-2 main protease (Mpro) (PDB ID 6LU7) and ACE receptor (PDB ID 6M0J). The best-docked complexes were used to develop a merged feature pharmacophore using Lig-andscout software, to know the structural requirements to develop multitarget inhibitor(s) of SARS-CoV-2. Drug likeliness and ADMET studies were also performed. Result(s): The results revealed that Syringin, a glycoside from Tinospora cordifolia, has a good binding affinity towards both targets as compared to Remdesivir. Furthermore, drug likeliness and ADMET studies established its better bioavailability and low toxicity. Conclusion(s): The pharmacophores developed from protein-ligand complexes provided an important understanding to design multitarget inhibitor(s) of SARS-CoV-2 to treat COVID-19 lung infection in both the adult and juvenile populations. Syringin may be subjected to further wet-lab studies to establish the results obtained through in-silico studies.Copyright © 2022 Bentham Science Publishers.

20.
Journal of the Indian Chemical Society ; 100(3) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2260187

ABSTRACT

We report in silico studies of pyridoxal, which is of interest both as a precursor for further functionalization due to the presence of the aldehyde functionality, as well as a bioactive compound. So far, the crystal structure of pyridoxal has not been reported and, thus, we have optimized its structure both under water solvation and in gas phase using the DFT calculations. Under water solvation conditions the optimized structure of pyridoxal is 7.62 kcal/mol more favorable in comparison to that in gas phase. The DFT calculations were also applied to verify optical and electronic properties of the optimized structure of pyridoxal in water. The HOMO and LUMO were revealed to subtract a set of descriptors of the so-called global chemical reactivity as well as to probe pyridoxal as a potential corrosion inhibitor for some important metals used in implants. The title compound exhibits the best electron charge transfer from the molecule to the surface of Ni and Co. Some biological properties of pyridoxal were evaluated using the respective on-line tools. Molecular docking was additionally applied to study interaction of pyridoxal with some SARS-CoV-2 proteins as well as one of the monkeypox proteins. It was established that the title compound is active against all the applied proteins with the most efficient interaction with nonstructural protein 15 (endoribonuclease) and Omicron Spike protein of SARS-CoV-2. Pyridoxal was found to be also active against the studied monkeypox protein. Interaction of pyridoxal with nonstructural protein 15 (endoribonuclease) was further studied using molecular dynamics simulation.Copyright © 2023 Indian Chemical Society

SELECTION OF CITATIONS
SEARCH DETAIL